3.1271 \(\int \frac{(a+a \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=184 \[ \frac{2 a (7 A+7 B+5 C) \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{2 a (7 A+7 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{2 a (5 A+3 (B+C)) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a (B+C) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 a C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)} \]

[Out]

(2*a*(5*A + 3*(B + C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*(7*A + 7*
B + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a*C*Sin[c + d*x])/(7*d*S
ec[c + d*x]^(5/2)) + (2*a*(B + C)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*a*(7*A + 7*B + 5*C)*Sin[c + d*x]
)/(21*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.297967, antiderivative size = 184, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 41, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {4221, 3033, 3023, 2748, 2639, 2635, 2641} \[ \frac{2 a (7 A+7 B+5 C) \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{2 a (7 A+7 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{2 a (5 A+3 (B+C)) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a (B+C) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 a C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*(5*A + 3*(B + C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*(7*A + 7*
B + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a*C*Sin[c + d*x])/(7*d*S
ec[c + d*x]^(5/2)) + (2*a*(B + C)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*a*(7*A + 7*B + 5*C)*Sin[c + d*x]
)/(21*d*Sqrt[Sec[c + d*x]])

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3033

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*d*Cos[e + f*x]*Sin[e + f*x]*(a + b
*Sin[e + f*x])^(m + 1))/(b*f*(m + 3)), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c*
(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e +
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
!LtQ[m, -1]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt{\sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\\ &=\frac{2 a C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{1}{7} \left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \left (\frac{7 a A}{2}+\frac{1}{2} a (7 A+7 B+5 C) \cos (c+d x)+\frac{7}{2} a (B+C) \cos ^2(c+d x)\right ) \, dx\\ &=\frac{2 a C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 a (B+C) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{35} \left (4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \left (\frac{7}{4} a (5 A+3 (B+C))+\frac{5}{4} a (7 A+7 B+5 C) \cos (c+d x)\right ) \, dx\\ &=\frac{2 a C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 a (B+C) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{7} \left (a (7 A+7 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{3}{2}}(c+d x) \, dx+\frac{1}{5} \left (a (5 A+3 (B+C)) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 a (5 A+3 (B+C)) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 a (B+C) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 a (7 A+7 B+5 C) \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{1}{21} \left (a (7 A+7 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a (5 A+3 (B+C)) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a (7 A+7 B+5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{21 d}+\frac{2 a C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 a (B+C) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 a (7 A+7 B+5 C) \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.963751, size = 125, normalized size = 0.68 \[ \frac{a \sqrt{\sec (c+d x)} \left (\sin (2 (c+d x)) (70 A+42 (B+C) \cos (c+d x)+70 B+15 C \cos (2 (c+d x))+65 C)+20 (7 A+7 B+5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+84 (5 A+3 (B+C)) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{210 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(a*Sqrt[Sec[c + d*x]]*(84*(5*A + 3*(B + C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 20*(7*A + 7*B + 5*C
)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (70*A + 70*B + 65*C + 42*(B + C)*Cos[c + d*x] + 15*C*Cos[2*(c
 + d*x)])*Sin[2*(c + d*x)]))/(210*d)

________________________________________________________________________________________

Maple [B]  time = 0.941, size = 481, normalized size = 2.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(1/2),x)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(240*C*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c
)+(-168*B-528*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(140*A+308*B+448*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+
1/2*c)+(-70*A-112*B-122*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-105*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+35*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+35*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)
/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C a \cos \left (d x + c\right )^{3} +{\left (B + C\right )} a \cos \left (d x + c\right )^{2} +{\left (A + B\right )} a \cos \left (d x + c\right ) + A a}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((C*a*cos(d*x + c)^3 + (B + C)*a*cos(d*x + c)^2 + (A + B)*a*cos(d*x + c) + A*a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \frac{A}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{A \cos{\left (c + d x \right )}}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{B \cos{\left (c + d x \right )}}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{B \cos ^{2}{\left (c + d x \right )}}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{C \cos ^{2}{\left (c + d x \right )}}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{C \cos ^{3}{\left (c + d x \right )}}{\sqrt{\sec{\left (c + d x \right )}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/sec(d*x+c)**(1/2),x)

[Out]

a*(Integral(A/sqrt(sec(c + d*x)), x) + Integral(A*cos(c + d*x)/sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x
)/sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)**2/sqrt(sec(c + d*x)), x) + Integral(C*cos(c + d*x)**2/sqrt
(sec(c + d*x)), x) + Integral(C*cos(c + d*x)**3/sqrt(sec(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)